LMGC90 Post-Processing

User's guide - v3

13 janvier 2021

LMGC90 Post-processing

Credits

- Mathieu Renouf (Mathieu.Renouf@umontpellier.fr)
- Frédéric Dubois (Frederic.Dubois@umontpellier.fr)
- Rémy Mozul (Remy.Mozul@umontpellier.fr)

LMGC90 Post-processing

Contains

Introduction

Command list

2D/3D command list

2D command list

3D command list

Examples

LMGC90 Post-processing

Contains

Introduction

Command list

2D/3D command list

2D command list

3D command list

Examples

LMGC90 Post-processing

Introduction

The LMGC90 post-processing tools allow to extract in independent files the evolution with respect to time of different quantities during a simulation or in some case using existing outputs (a.k.a post-mortem).

For example one can extract :

- evolution of the position of a single body;
- evolution of the energy dissipated by the system;
- convergence of the contact solver.

It relies on a set of commands given in the POSTPRO.DAT file located in the DATBOX directory.

This file might be generated by the preprocessor; it can be modified directly but it is no recommended.

LMGC90 Post-processing

Introduction

The post-processing starts by an initialization phase performed with the command *OpenPostproFiles()*. This command scans the POSTPRO.DAT file and initializes the post-processing data structures.

During the time evolution loop, the command *WritePostproFiles()* allows the treatment of post-processing commands.

Each command is executed during the simulation process according to its own execution frequency.

The resulting files are written in the POSTPRO directory.

All the files are closed by to the ClosePostproFiles() command.

LMGC90 Post-processing

Introduction

If a simulation has already run, it is possible to do a post-mortem analysis using the stored output files (Vloc_Rloc.OUT.XXX and DOF.OUT.XXX files for instance).

It means that the user does not need to run the simulation again.

LMGC90 Post-processing

Contains

Introduction

Command list

2D/3D command list

2D command list

3D command list

Examples

LMGC90 Post-processing

Introduction

Command list 2D/3D command list 2D command list 3D command list Examples

Command list

The available commands have been grouped in three sections :

- commands which could be used in both 2D and 3D simulations;
- commands which could be used only in 2D simulations;
- commands which could be used only in 3D simulations.

2-3D commands

AVERAGE VELOCITY EVOLUTION CONTACT FORCE DISTRIBUTION DISPLAY TENSORS DRY CONTACT NATURE HEAT BOUND PROFILE MP SNAPSHOT SAMPLE NORMAL CONTACT DISTRIBUTION SOLVER INFORMATIONS TORQUE EVOLUTION	BODY TRACKING COORDINATION NUMBER DISSIPATED ENERGY ELECTRO EVOLUTION KINETIC ENERGY MP VALUE TRACKING NEW MECAX SETS QUASI SLIDING CONTACT SPECIES KINETIC ENERGY VIOLATION EVOLUTION	CLOUD ANALYSIS Dep EVOLUTION DOUBLET INTERACTIONS Finit EVOLUTION MAILX DIST NETWORK EVOLUTION NEW RIGID SETS SNAPSHOT SAMPLE THERMAL EVOLUTION WET CONTACT NATURE
2D commands		
COMPACITY EVOLUTION PLPLx ANALYSIS	CREATE TEXT DATA	DENSE SAMPLE COMPACITY
3D commands		
PRxxx DETECTION VISIBILITY STATE	PTPT3 ANALYSIS	TRIAXIAL COMPACITY

LMGC90 Post-processing

Introduction

Command list 2D/3D command list 2D command list 3D command list Examples

Contains

Introduction

Command list

2D/3D command list

2D command list

3D command list

Examples

LMGC90 Post-processing

AVERAGE VELOCITY EVOLUTION

The command allows to determine the mean velocity of a set of particles at a given time step during the simulation process. Data are stored in the file AVERAGE.VELOCITY.DAT as :

2D		t	$\bar{\dot{\mathbf{q}}}_X$	₫y	$\bar{\omega}_Z$	ā			
3D	I	t	$\bar{\mathbf{q}}_{X}$	ά _ν	₫ <i>z</i>	$\bar{\omega}_{\alpha}$	ūβ	$\bar{\omega}_{\gamma}$	ā́

where *t* is the simulation time, $\tilde{\mathbf{q}}_i$ the mean velocity along the i direction, ω_i the mean spin around the axe (G ;i) (i equal to Z in 2D and α, β or γ in 3D) and $\|\tilde{\mathbf{q}}\|$ the euclidean norm of the mean velocity.

The synopsis of the command in the POSTPRO.DAT file is the following :

AVERAGE VELOCITY EVOLUTION STEP N COLOR

where N denotes the command period (*INTEGER*) and COLOR the color of particles for which the average is performed (*CHARACTER(LEN=5)*).

back to the full list

LMGC90 Post-processing

BODY TRACKING

The command allows to track the evolution of both position and velocity of one or more selected bodies. Different data are stored in files BODY_TRACKING_XXXXXX.DAT as :

2D	t	q <i>x</i>	qy	θ_Z	$\Delta \mathbf{q}_X$	$\Delta \mathbf{q}_{\mathcal{Y}}$	$\Delta \theta_Z$	ġ <i>x</i>	ġy	ω_Z			
3D	t	\mathbf{q}_{X}	qy	qz	$\Delta \mathbf{q}_X$	Δq_y	$\Delta \mathbf{q}_Z$	ġ _x	₫ _У	ġ₂	ω_{α}	ω_{β}	ω_{γ}

where *t* is the simulation time, \mathbf{q}_i the position along the *i* direction, $\Delta \mathbf{q}_i$ the displacement along the *i* direction, $\dot{\mathbf{q}}_i$ the velocity along the *i* direction and ω_i the spin around the axe (G ;i) (*i* equal to Z in 2D and α, β, γ in 3D).

The synopsis of the command in the POSTPRO.DAT file is the following :

BODY TRACKING STEP N	
nb ID_1	
 ID_nb	

where N denotes the command period, nb the number of tracked bodies and ID.i the index of the body in the RBDY2 or RBDY3 list.

There is **nb** files BODY_TRACKING_XXXXX.DAT created where each file is identified by the body index instead of the XXXXXXX characters.

back to the full list

CLOUD ANALYSIS

The synopsis of the command in the POSTPRO.DAT file is the following :

CLOUD ANALYSIS STEP N

where N denotes the command period.

back to the full list

LMGC90 Post-processing

Introduction

Command list

2D/3D command list

D command list

3D command list

CONTACT FORCE DISTRIBUTION

This command allows to plot an histogram of the contact force repartition in a sample normalized by its mean value.

The histogram is created using both the euclidean norm of the contact force and its normal component only. The discretization is an input of the command.

Data are stored in the files CONTACT_FORCE_DISTRIBUTIONXXXX.DAT (the XXXX characters correspond to the time increment) as :

2D/3D Vr Nr Vrn Nrn

where for each interval V_r corresponds to the value on the normalized force, N_r to the number of contact corresponding to this value, $V_{r_{f1}}$ to the value on the normalized normal force and $N_{r_{f1}}$ to the number of contact corresponding to this value. The number of the is equal to the discretization level.

The synopsis of the command in the POSTPRO.DAT file is the following :

CONTACT FORCE DISTRIBUTION STEP N sa

where N denotes the command frequency and sa the force scale discretization.

back to the full list

LMGC90 Post-processing

COORDINATION NUMBER

This command allows to track the evolution of the mean coordination number (number of contacts per body) according to different definitions :

$$c_0 = \frac{n_p}{n_b} c_+ = \frac{n_c}{n_b} c_- = \frac{n_t}{n_b} c = \frac{n_a}{n_b}$$
 (1)

where n_p , n_c , n_t , n_a and n_b denote respectively the mean number of contacts, the mean number contacts in compression ($n_f > 0$.), the mean number contact in traction ($n_f < 0$.), the mean number of active contacts ($n_f \neq 0$.) and the number of bodies. Data are stored in files COORDINATION_NUMBER.DAT as :

2D/3D | $t c_0 c_+ c_- c$

where t is the simulation time.

The synopsis of the command in the POSTPRO.DAT file is the following :

COORDINATION NUMBER STEP N

where N denotes the command period.

Works for DISKx on RBDY2!

back to the full list

LMGC90 Post-processing

Introduction

Command list

2D/3D command list

D command list

3D command list

Dep EVOLUTION

The command allows to track the mean displacement and the mean velocity of a node set of a deformable body defined using the command NEW_MECAx_SETS. Data are stored in the file Dep_XXX.DAT as :

2D	t	u_X	uy	VX	vy	
2D	t	u _x	uy	u _Z	V _X	vy

where t is the simulation time, u_X and u_Y the mean displacements along the X and Y axes and, v_X and v_Y the mean velocities along the X and Y axes. The number of file Dep_XXX.DAT is equal to the number of mechanical set defined using the command NEW.MECAX.SETS. XXX characters are replaced by the index of the mechanical set in the global list.

V7

The synopsis of the command in the POSTPRO.DAT file is the following :

Dep EVOLUTION STEP N

where N denotes the command period.

back to the full list

LMGC90 Post-processing

Introduction

Command list

2D/3D command list

D command list

3D command list

DOUBLET INTERACTIONS

This command allows to track the evolution of a contact between two rigid bodies. Data are stored in the file DOUBLET_INTERACTIONS.DAT as :

2D	I	t	g	rn	r _t	vn	v _t	
3D	L	t	g	rn	r _t	rs	vn	V _t

where t is the simulation time, g the distance between particles, r_n , r_t and r_s the normal and tangential forces, v_n , v_t and v_s the normal and tangential relative velocities.

Vs

The synopsis of the command in the POSTPRO.DAT file is the following :

DOUBLET INTERACTIONS STEP N TYPE ID1 ID2

where N denotes the command period, TYPE the nature of the contact (in the interaction list), ID1 and ID2 the two body identifiants.

back to the full list

LMGC90 Post-processing

DRY CONTACT NATURE

This command allows to track the evolution of the number of contacts according to their status for dry contact law. Data are stored in the file DRY_CONTACT_NATURE.DAT as :

2D/3D t Nno Nstick NSlide

where t is the simulation time, N_{no} the number of non active contacts, N_{Slide} the number of sliding contact and N_{stick} the number of sticking contacts.

The synopsis of the command in the POSTPRO.DAT file is the following :

DRY CONTACT NATURE STEP N

where N denotes the command period.

back to the full list

LMGC90 Post-processing

Introduction

Command list

2D/3D command list

2D command list

3D command list

ELECTRO EVOLUTION

The command allows the storage of electrical output during the simulation process. Data are stored in the file ELECTRO_EVOLUTION.DAT as :

2D | t it_L ϵ it_{NL} C_m Nb_O Nb_{CO} Nb_{S0}

where t is the simulation time, $it_{\rm L}$ the number of iterations for the resolution of the linear electrical problem, ϵ the error value, $it_{\rm NL}$ the number of iterations for the resolution of the nonlinear electrical problem, $C_{\rm m}$ the mean conductivity of the sample, $Nb_{\rm D}$ the number of oxided contacts ...

The synopsis of the command in the POSTPRO.DAT file is the following :

ELECTRO EVOLUTION STEP N

where N denotes the command period.

back to the full list

LMGC90 Post-processing

Introduction

Command list

2D/3D command list

2D command list

3D command list

Fint EVOLUTION

The command allows to track the forces acting on a node set of a deformable body defined using the command NEW.MECAx.SETS. Data are stored in the file Fint_XXX.DAT as :

2D	t	Rc _X	Rcy	F _{int,x}	F _{int,y}	F _{iner,x}	F _{iner} ,y	R _X	Ry
3D	t F _{iner,x}	Rc _x F _{iner,y}	Rcy F _{iner,z}	Rcz Rx	F _{int,x} Ry	F _{int,y} Rz	F _{int,z}		

where *t* is the simulation time, *Rc* the contact forces, *F_{int}* the internal forces, *F_{int}* the intertial forces and finally *R* the sum of all forces. The number of file Fint_XXX.DAT is equal to the number of mechanical set defined using the command NEW.MECAx.SETS. XXX characters are replaced by the index of the mechanical set in the global list.

The synopsis of the command in the POSTPRO.DAT file is the following :

Fint EVOLUTION STEP N

where N denotes the command period.

back to the full list

Introduction

2D/3D command list

D command list

3D command list

KINETIC ENERGY

The command allows to compute the kinetic energy of a sample as well as the power and the variation of kinetic energy during the simulation process. The kinetic energy and the potential energy are defined as :

$$\mathcal{E}_{C} = \frac{1}{2} \sum_{i=1}^{n_{D}} \{m_{i} \dot{\mathbf{q}}_{i}^{2} + l_{i} \omega_{i}^{2} \} \quad \mathcal{E}_{p} = \sum_{i=1}^{n_{D}} m_{i} \mathbf{g}. \mathbf{q}$$
(2)

where n_b denotes the number of bodies, m_i the mass of body *i*, $\dot{\mathbf{q}}_i$ its velocity, l_i its inertia momentum and ω_i its spin. **g** denotes the gravity acceleration and **q** the body position.

Data are stored in the file KINETIC_ENERGY.DAT as :

2D/3D | $t \in \mathcal{E}_{\mathcal{D}} \subset \mathcal{E}_{\mathcal{D}} \subset \Delta \mathcal{E} \subset \mathcal{P}$

where *t* is the simulation time, $\mathcal{E}_{\mathcal{C}}$ and $\mathcal{E}_{\mathcal{P}}$ denote the kinetic and potential energy respectively, $\Delta \mathcal{E}$ the energy variation and \mathcal{P} the power of the system.

The synopsis of the command in the POSTPRO.DAT file is the following :

KINETIC ENERGY STEP N

where N denotes the command period.

back to the full list

LMGC90 Post-processing

Introduction

Command list

2D/3D command list

D command list

3D command list

MAILx Dist

To complete ...

The synopsis of the command in the POSTPRO.DAT file is the following :

MAILx Dist STEP N

where N denotes the command period.

back to the full list

LMGC90 Post-processing

Introduction

Command list

2D/3D command list

D command list

3D command list

MP SNAPSHOT SAMPLE

The command allows to make a snapshot of the thermal, electrical and mechanical sample. For each snapshot, data are stored in two files.

The file BODY_SNAPSHOTXXXXX.DAT contains body information written as follow (n_b lines, where n_b is the number of bodies, 16 columns in 2D and 25 columns in 3D):

2D	q _X T	q y C _T	A E	ġ _x C _E	ġ _y W _S	ω_Z	$\sigma_{\chi\chi}$	σ_{XY}	σγχ	буу	0
3D	q χ σχχ Τ	q y σ _{xy} С _T	q z σ _{xz} Ε	V ^σ yx C _E	άx ^σ yy W _S	q y σyz	q z σ _{ZX}	ω _X σ _Z y	ω_y σ_{ZZ}	ω _Z c	

where \mathbf{q}_i denotes the body position, A(V) the body surface (volume), $\dot{\mathbf{q}}_i$ the component of the velocity along i, ω_i the spin around the (0; i) axe, σ_j is the body stress tensor, c the coordination number, T the temperature, C_T the thermal conductivity, E the electrical potential, C_E the electrical conductivity and \mathbb{W}_2 the surface energy (i, j equal to x, y or z).

The file CONTACT_SNAPSHOTXXXXX.DAT contains contact information written as follow (n_c lines, where n_c is the number of contacts, 13 columns in 2D and 15 columns in 3D):

2D	I	type	cd	an	rn	r _t	vn	v _t		inter	nal(1:6)
3D	I	type	cd	an	rn	r _t	rs	vn	v _t	v_S	internal(1:6)

where type denotes the type of contact (DKDKx,PLPLx,...), *cd* and *an* the number of the candiate and the antagonist in the contactor list, *r* the contact force, *r* the contact relative velocity and *internal* some internal variables associate to the contact (see specific contact laws as CZM ones).

The synopsis of the command in the POSTPRO.DAT file is the following :

MP SNAPSHOT SAMPLE STEP N

where N denotes the command period.

NETWORK EVOLUTION

The command allows to track the number of changing contact status during the computation of contact forces. The global, weak and strong network are checked. Data are stored in the file NETWORK.EVOLUTION.DAT as :

 $2D/3D \mid t N_G N_W N_S$

where *t* is the simulation time, N_G, N_W and N_S respectively the number of contact for which the status change in the global, weak and strong network.

The synopsis of the command in the POSTPRO.DAT file is the following :

NETWORK EVOLUTION STEP N

where N denotes the command period.

back to the full list

LMGC90 Post-processing

Introduction

Command list

2D/3D command list

2D command list

3D command list

NEW BOUNDED SETS

The command allows the definition of new sets of rigid particles. The particles contained in a bounded set should have successive number in the body list. For each new set, different information are given in different files : LMGC90 Post-processing

Introduction

ω Examples

2D/3D command list

2D		EVO	BOUNDE	D_SET_00	00000.DAT								
		t	q _X	q_y	q_Z	$\Delta \mathbf{q}_X$	Δq_y	∆q́ _y	ġ _X	¢y∕	ω_Z	•	
	L	REAG	CBOUNDE	ED_SET_0	00000.DAT				_				
	Γ	t	R _X	Ry	Mz	Fext _X	Fexty	Mextz					
3D	T	EVO	BOUNDE	D_SET_00	000000.DAT								
		t	q <i>x</i>	q_y	q _Z	$\Delta \mathbf{q}_X$	$\Delta \mathbf{q}_{y}$	Δq_y	q <i>x</i>	q <i>y</i>	q _Z	ω_X	ω_y
	I	REAG		ED_SET_0	00000.DAT								
		t	R _X	Ry	Rz	M _X	M_y	Mz					
	I	Fext_	BOUNDED	_SET_000	0000.DAT								
		t	Fext _x	Fexty	Fext _Z	Mext _x	Mexty	Mext _Z					
	T	Fine_	BOUNDED	.SET_000	0000.DAT								
		t	Finex	Finey	Finez	Mine _X	Miney	Minez					

where *t* is the simulation time, **q** the position, **Aq** the displacement, **q** the velocity and ω the splin. *R* and *M* are the resultant and the moment due to contact forces, *Fext* and *Mext* the sum of external forces and momentum, and *Fine* and *Mine* the inertia force and momentum. All variables are indexed according to the different axes.

The synopsis of the command in the POSTPRO.DAT file is the following :

NEW BOUNDED SETS n N1_1		
N1.m1		
Nn₋1 Nn₋mn		

where n is the number of sets, Ni.1 and Ni.mi the number of the first and last bodies which defined the set *i*. Remember that in a given set, all bodies have successive number.

NEW MECAx SETS

The command allows the definition of node sets. The command must be used with the command Fint EVOLUTION and Dep EVOLUTION to obtain information. If the command is used alone, no information are obtained.

The synopsis of the command in the POSTPRO.DAT file is the following :

NEW MECAx SETS n id1 m1 N1_1		
 N1.m1		
 idn mn Nn_1		
 Nn_mn		

where n is the number of sets, idi and mi the type and the number of node of the set i and Ni.1,...,Ni.mi the list of nodes.

back to the full list

LMGC90 Post-processing

Introduction

Command list

2D/3D command list

2D command list

3D command list

NEW RIGID SETS

The command allows the definition of new sets of rigid particles. The particles contained in a rigid set do not have necessary successive number in the body list. For each new set, different information are given in different files :

2D	L	EVO	L_RIGID_S	ET_00000	00.DAT										Command
		t	\mathbf{q}_X	q y	qz	$\Delta \mathbf{q}_X$	Δq_y	Δġ _y	ġ _X	₫ _y	ω_Z				Command
	ī.			ET 00000											2D/3D con
	┢	t	R _X	Ry	M _Z	Fext _X	Fexty	Mextz	-						
3D	I	EVO	L-RIGID-S	ET_00000	00.DAT										
		t	q _X	qy	qz	$\Delta \mathbf{q}_X$	$\Delta \mathbf{q}_{\mathbf{y}}$	$\Delta \dot{\mathbf{q}}_{y}$	ġ <i>x</i>	ġ _y	ġ₂	ω_X	ω_y	ω	² Examples
	I	REA	C_RIGID_S	SET_00000	00.DAT										
		t	R _X	Ry	Rz	M _X	M_y	Mz							
	I	Fext.	.RIGID_SE	T_0000000	.DAT										
		t	Fext _X	Fexty	Fextz	Mext _X	Mexty	Mext _Z							
	I	Fine	RIGID_SE	T_0000000).DAT										
		t	Fine _x	Finey	Fine _Z	Mine _x	Miney	Mine _z							

LMGC90 Post-processing

mand list

Introduction

where t is the simulation time, **q** the position, Δ **q** the displacement, **q** the velocity and ω the splin. R and M are the resultant and the moment due to contact forces, *Fext* and *Mext* the sum of external forces and momentum, and *Fine* and *Mine* the inertia force and momentum. All variables are indexed according to the different axes. The synopsis of the command in the POSTPRO.DAT file is the following :

NEW RIGID SETS
n
m1
N1_1
N1_m1
mn
Nn_1
Nn₋mn

where n is the number of sets, mi the number of body in the set number i followed by the list of mi bodies Ni_1,...,Ni_mi.

NORMAL CONTACT DISTRIBUTION

The command allows the representation of normal contact vector distribution between DISKx or POLYG. Three representations are available related to the global contact network, the weak contact network and the strong contact network. The difference between the strong and weak contact networks is made in regards of the mean value of the normal contact force \hat{r}_n defined as :

$$\bar{r}_n = \frac{1}{n_a} \sum_{\alpha=1}^{n_a} r_n^{\alpha}$$

where n_a denotes the number of active contact (non nul) and r_n^{α} the normal force associated to contact α .

Data are stored in two files. The first file is the file NORMAL_CONTACT_DISTRIBUTION.DAT where the diagram data are stored as :

2D $| X_G Y_G X_W Y_W X_S Y_S$

where indices G, W and S refer respectively to global, weak and strong contact network.

The second file is the file P2THETA.DAT where the histogram data are stored as :

2D | θ_i N_G N_W N_S

where θ_i is the sector value (in radian) ranging from $-\pi$ to π , N_G , N_W and N_S the percent of contact of the global, weak and strong contact network in the θ_i direction.

The synopsis of the command in the POSTPRO.DAT file is the following :

NORMAL CONTACT DISTRIBUTION STEP N ns

where N denotes the command period, nb the number of angular sectors of the upper part.

back to the full list

LMGC90 Post-processing

Introduction

(3)

Command list

2D/3D command list

2D command list

3D command list

QUASI SLIDING CONTACT

The command computes the number of contacts for which the tangential force r_t is close to the sliding threshold μr_n . To be taken into account, the tangential force of a contact must satisfied :

$$(1 - \epsilon)\mu r_n < |r_t| \le \mu r_n$$

where ϵ is a small real value.

Data are stored in the file QUASI_SLIDING_CONTACT_EVOLUTION.DAT as :

2D/3D | t N p

where t is the simulation time, N the number of quasi sliding contacts and p the quasi sliding contacts percent.

The synopsis of the command in the POSTPRO.DAT file is the following :

QUASI SLIDING CONTACT STEP N P

where N denotes the command period and P the part of the friction threshold in less (range from 0 to 1).

back to the full list

LMGC90 Post-processing

Introduction Command list 2D/3D command list 2D command list 3D command list Examples Postpro file example

(4)

SNAPSHOT SAMPLE

The command allows to make a snapshot of the thermal, electrical and mechanical sample. For each snapshot, data are stored in two files.

The file BODY_SNAPSHOTXXXXX.DAT contains body information written as follow (n_b lines, where n_b is the number of bodies, 16 columns in 2D and 25 columns in 3D):

2D	q _X	$\mathbf{q}_{\mathcal{Y}}$	А	$\dot{\mathbf{q}}_X$	ġ _y	ω_Z	σ_{XX}	σ_{XY}	σ_{yx}	σ_{yy}	С
3D	q χ σ _{XX}	$\mathbf{q}_{y} \sigma_{xy}$	q z σ _{xz}	ν σ _{yx}	άx σyy	q y σyz	q́z σ _{zx}	ωχ σ _Z y	ω_y σ_{ZZ}	ωz C	

where \mathbf{q}_i denotes the body position, A (V) the body surface (volume), $\dot{\mathbf{q}}_i$ the component of the velocity along *i*, ω_i the spin around the (0; *i*) axe, σ_{ij} the body stress tensor, *c* the coordination number (*i*, *j* equal to *x*, *y* or *z*).

The file CONTACT_SNAPSHOTXXXXX.DAT contains contact information written as follow (n_c lines, where n_c is the number of contacts, 13 columns in 2D and 15 columns in 3D):

2D	I	type	cd	an	rn	r _t	vn	v _t		inter	nal(1:6)
3D	I	type	cd	an	rn	r _t	rs	vn	v _t	VS	internal(1:6

where type denotes the type of contact (DKDKx,PLPLx,...), cd and an the number of the candiate and the antagonist in the contactor list, r the contact force, w the contact relative velocity and internal some internal variables associate to the contact (see specific contact laws as CZM ones).

The synopsis of the command in the POSTPRO.DAT file is the following :

SNAPSHOT SAMPLE STEP N

where N denotes the command period.

back to the full list

LMGC90 Post-processing

SOLVER INFORMATIONS

The command allows to track the evolution of the number of iterations, the last value of error criteria (after convergence or not) and the contact number. Data are stored in file SOLVERJNFORMATIONS.DAT as :

2D/3D | $t \quad N_{it} \quad \epsilon_1 \quad \epsilon_2 \quad \epsilon_3 \quad n_C$

where t is the simulation time, N_{it} the number of iterations, ϵ_i (i=1,2,3) the last values of error criteria and n_c the number of contacts.

The synopsis of the command in the POSTPRO.DAT file is the following :

SOLVER INFORMATIONS STEP N

where N denotes the command period.

back to the full list

LMGC90 Post-processing

Introduction

Command list

2D/3D command list

2D command list

3D command list

SPECIES KINETIC ENERGY

The command allows to compute the kinetic energy of different species of a sample as well as the power and the variation of kinetic energy during the simulation process. The kinetic energy is defined as it is for the KINETIC ENERGY command. Data are stored in the file XXXXLKINETIC.ENERGY.DAT as :

2D/3D | $t \in \mathcal{E}_{C} \in \mathcal{E}_{D} \quad \Delta \mathcal{E} \in \mathcal{P}$

where *t* is the simulation time, $\mathcal{E}_{\mathcal{C}}$ and $\mathcal{E}_{\mathcal{P}}$ denote the kinetic and potential energy respectively, $\Delta \mathcal{E}$ the energy variation and \mathcal{P} the power of the system.

The synopsis of the command in the POSTPRO.DAT file is the following :

KINETIC ENERGY STEP N
ns S_1
 S_ns

where N denotes the command period, ns the number of species, S.i the different tracked species. There is ns files XXXXX.KINETIC_ENERGY.DAT created where each file is identified by the species name instead of the XXXXX characters.

back to the full list

LMGC90 Post-processing

Introduction

Command list

2D/3D command list

D command list

3D command list

TORQUE EVOLUTION

The command allows to track the evolution of the torque of contact forces and external forces of different bodies. Data are stored in different files as :

where *t* is the simulation time, *R* and *M* the resultant and the moment due to contact forces, *Fext* and *Mext* the sum of external forces and momentum, and *Fine* and *Mine* the inertia force and momentum, all indexed according to the different axes (*x*, *y* or *z*).

The synopsis of the command in the POSTPRO.DAT file is the following :

TORQUE EVOLUTION STEP N nb ID.1	
 ID_nb	

where N denotes the command period, nb the number of tracking bodies and ID_i the index of the body in the RBDY2 or RBDY3 list.

There is **nb** files TORQUE_EVOLUTION_XXXX.DAT created where each file is identified by the body index instead of the XXXXXXX characters.

LMGC90 Post-processing

Introduction Command list 2D/3D command list 2D command list 3D command list Examples Postpro file example

back to the full list

VIOLATION EVOLUTION

The command compute the mean and maximal violation in a sample during the simulation process. The mean and maximal violation are defined as :

$$\begin{cases} V_{mean} = \frac{1}{n_{C}} \sum_{\alpha} |\min(0, g_{\alpha})| \\ V_{max} = \max_{\alpha} \{|\min(0, g_{\alpha})| \} \end{cases}$$

where n_{c} denotes the number of contacts and g_{α} the gap associated to contact α .

Data are stored in the file VIOLATION_EVOLUTION.DAT as :

2D/3D $\mid t \quad V_{mean}^{0} \quad V_{mean} \quad V_{max}^{0} \quad V_{max}$

where t is the simulation time, V_{mean}^0 et V_{mean} the mean violations at the beginning and the end of a time step and V_{max}^0 et V_{max} the maximal violations at the beginning and the end of a time step.

The synopsis of the command in the POSTPRO.DAT file is the following :

VIOLATION EVOLUTION STEP N

where N denotes the command period.

back to the full list

LMGC90 Post-processing

Introduction Command list 2D/3D command list 2D command list 3D command list Examples Postpro file example

(5)

WET CONTACT NATURE

The command allows to track the evolution of the number of contacts according to their status for cohesive contact law. Data are stored in the file WET_CONTACT_NATURE.DAT as :

2D/3D t NStick NSlide Nno

where *t* is the simulation time, N_{Stick} the number of sticking contacts, N_{Slide} the number of sliding contact et N_{no} the number of non active contacts.

The synopsis of the command in the POSTPRO.DAT file is the following :

WET CONTACT NATURE STEP N

where N denotes the command period.

back to the full list

LMGC90 Post-processing

Contains

Introduction

Command list

2D/3D command list

2D command list

3D command list

Examples

LMGC90 Post-processing

COMPACITY EVOLUTION

Works only for deformable objects !!

LMGC90 Post-processing

Introduction Command list 2D/3D command list 2D command list 3D command list Examples

CREATE TEXT DATA

Bull shit!

To serialize the various results (usually stored in OUTBOX) in a text file for analysis. The synopsis of the command in the POSTPRO.DAT file is the following :

CREATE TEXT DAT STEP N

where N denotes the command period.

LMGC90 Post-processing

Introduction Command list 2D/3D command list 2D command list 3D command list Examples

PLPLx ANALYSIS

The command determines the number of simple contacts and the number of double contacts in a polygon sample. Data are stored in the file PLPLx.ANALYSIS.DAT as :

2D t N_S N_d

where t is the simulation time, N_S the number of simple contacts and N_d the number of double contacts.

The synopsis of the command in the POSTPRO.DAT file is the following :

PLPLx ANALYSIS STEP N

where N denotes the command period.

back to the full list

LMGC90 Post-processing

The synopsis of the command in the POSTPRO.DAT file is the following :

PRxxx DETECTION STEP N

where N denotes the command period.

back to the full list

LMGC90 Post-processing

TRIAXIAL COMPACITY

The synopsis of the command in the POSTPRO.DAT file is the following :

where N denotes the command period (*INTEGEN*), **iXmin** and **iXmax** the number of PLANx bounding the set along the X direction, **iVmin** and **iVmax** the number of PLANx bounding the set along the Y direction. **iZmin** and **iZmax** the number of PLANx bounding the set along the Z direction.

back to the full list

LMGC90 Post-processing

VISIBILITY STATE

The synopsis of the command in the POSTPRO.DAT file is the following :

VISIBILITY STATE STEP N

where N denotes the command period.

back to the full list

LMGC90 Post-processing

Contains

Introduction

Command list

2D/3D command list

2D command list

3D command list

Examples Postpro file example LMGC90 Post-processing

Postpro file example

#23456789012345678901234567890	:
BODY TRACKING	:
STEP 1	:
1	:
54	:
TORQUE EVOLUTION	:
STEP 1	:
1	:
56	:
SOLVER INFORMATIONS	:
STEP 1	:
DISSIPATED ENERGY	:
STEP 1	:
VIOLATION EVOLUTION	:
STEP 1	:
END	:

LMGC90 Post-processing